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CHAPTER  28B (extended):
Kirchoff’s Laws and Capacitors

1 Ω



The Island Series:

1.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem: Determine the equivalent resistance for the combination of 
resistors found in the circuit to the right.
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Some Definitions

2.)

A branch: A section of a circuit in which 
the current is the same everywhere.

--elements in series are a part of a single 
branch (look at sketch).
--in the circuit to the right, there are three 
branches.

A node: A junction where current can split up or be added to.

--elements in parallel have nodes internal to the combination.
--in the circuit above, there are two nodes.

A loop: Any closed path inside a circuit.

--in a circuit, loops can be traverse in a clockwise or counterclockwise direction.

branch branch
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Loop 1 Loop 2

Loop 3

--in the circuit above, there are three loops.
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For the Amusement

3.)

For the circuit to the right:

a.) How many branches are there?
six
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b.) How many nodes are there?
four

c.) How many loops are there?
seven
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And that last little nubbin is supposed to be a tooth, cause this looks like a face to 
me!
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Note:  Current moves from hi to lo voltage, so traversing against the current through 
a resistor produces a       that is positive; traversing with current makes it negative.  

Kirchoff’s Laws—the Formal Approach

Kirchoff’s First Law: The sum of the currents 
into a node equals the sum of the currents out of a 
node.  Mathematically, this is written as:
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ε

With the definitions under your belt, 
Kirchoff’s Laws are simple (and you’ve been 
inadvertently using them in the seat-of-the-
pants evaluations).  They are:

R1
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R4

iinto node =∑ iout of node∑    

Kirchoff’s Second Law:  The sum of the voltage changes around a closed path (a 
loop) equals ZERO.  Mathematically, this is written as: ΔV∑ = 0  

Example from the circuit’s Node A: io = i2 + i3

io i2
i3

Node A

Examples: starting at Node A:

Loop 2

R1io − ε +R2i2 = 0
Loop 1 traversing counterclockwise:

−R3i3 −R4i3 +R2i2 = 0
Loop 2 traversing clockwise:

Loop 1

ΔV



Kirchoff’s Laws—Using the Approach

5.)

ε

Example 8: Determine the meter 
reading in the circuit to the right using 
Kirchoff’s Laws.  Assume the power supply 
is ideal with an EMF of 10 volts, and assume 
the resistor values are the same as their 
subscripts (this is essentially Example 4).  

R1

R2

R3

R4

Step 1:  Define one current for each branch.  

io i2
i3

Node A

A

V

Step 2.  Write out node equations for as

Node A:
many nodes as you can (see note below).  Be sure to identify
which node you are working with.  For this problem:

io = i2 + i3
Important note:  If  you had written out the node equation for the node at the 
bottom, you would have gotten                  .  This is the same equation as above.  
There will always be fewer independent node equations than actual nodes in a 
circuit.  In this case, there were two nodes and only one independent node equation. 

i2 + i3 = io

Step 0: Remove the meters.  



Step 3.  Identify and label the loops you will use.  Use an arrow in each to show 
the direction you intend to traverse that loop.

Note 1:  If there is a power supply in 
the loop, I prefer to start at the low 
voltage terminal and proceed through 
the supply.  That way, the voltage 
change through the supply will be 
positive.  With that in mind:
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ε

R1

R2

R3

R4

io i2
i3

Node A

Loop 1

Additional note:  You have three branches 
and three unknown currents, which means 
you will need three equations to solve.  You 
have one node equation, which means you 
will need two more equations, presumably 
from your loops.  Kindly note: there are three 
loops in this circuit, but you can only get 
TWO INDEPENDENT LOOP EQUATIONS
from them.  Any two of those equations will do, and any two will produce the 
third, which means that if you try to do this problem using nothing but loop 
equations, you’ll end up with mush.  (Try it if you don’t believe me!) 

ε −R1io −R2i2 = 0
Loop 1:

Loop 2

R2i2 −R3i3 −R4i3 = 0
Loop 2:

Note 2:  Put resistance terms first
as they’ll usually be assumed 
known whereas currents will not 
be.



Solving 3 Equations with 3 Unknowns

Putting in the numbers to make life easier:
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We have three equations and three unknowns.  The ammeter is in the branch 
whose current is    .  So how to solve for    ?  There are three approaches.

ε − R1io − R2i2 = 0     (equ. A) R2i2 − R3i3 − R4i3 = 0     (equ. B)

io = i2 + i3       (equ. C)

Our equations:
io

Approach 1—Brute force algebra:

10 − io − 2i2 = 0     (equ. A) 2i2 − 3i3 − 4i3 = 0     (equ. B)
   ⇒    2i2 − 7i3 = 0

io = i2 + i3       (equ. C)

I’ll lay this out on the next page, just to convince you it’s not the way to go.

io
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10 − io − 2i2 = 0        (equ. A)

   ⇒    i2 =
10 − io

2
= 10

2
− 1

2
io

2i2 − 7i3 = 0     (equ. B)
    ⇒     i3 =

2
7

i2      

io = i2 + i3       (equ. C)

⇒   io = i2 + i3     

         = i2 +
2
7

i2 =
9
7

i2

as

but

       io =
9
7

i2 =
9
7

10
2
− 1

2
i0

⎛
⎝⎜

⎞
⎠⎟

        ⇒     io =
90
14

− 9
14

i0

⇒    14io = 90 − 9i0

          ⇒    io = 90
23

          ⇒    io = 3.91 A

Like I said, NASTY!

so



--Begin by rewriting each equation so their     term is in the first column, its    
term is in the second column, etc., and its voltage term (if there is one) is on 
the right side of the equal sign.

Approaches 2 and 3: Matrices:
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ε − R1io − R2i2 = 0     becomes    R1io + R2i2 + 0i3 = ε   

Our equations become:

io i2

R2i2 − R3i3 − R4i3 = 0     becomes     0io + R2i2 − R3 + R4( )i3 = 0

io = i2 + i3       becomes      io − i2 − i3 = 0 

--Put the 
information 
into a matrix: R1 R2 0

0 R2 − R3 + R4( )
1 −1 −1

io

i2

i3

=
ε
0
0

  

io
column

i2
column

i3
column column

voltage



io =

10 2 0
0 2 −7
0 −1 −1

1 2 0
0 2 −7
1 −1 −1

  

--Using numbers:
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1 2 0
0 2 −7
1 −1 −1

io

i2

i3

=
10
0
0

  

Noting that the left-hand 3x3 matrix is 
called the determinate, solving for, say,     , 
requires the evaluation of two matrices, one 
divided into the other.  Specifically, the 
determinate divided into the determinate with 
the     column replaced by the voltage column 
(the far column to the right).  That is:

--You have two options at this point, depending upon your abilities with a 
calculator and whether there are any variables in your relationship.  The first 
approach is a manual evaluation of the matrices and will always work.

io

R1 R2 0

0 R2 − R3 + R4( )
1 −1 −1

io

i2

i3

=
ε
0
0

  becomes

io
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--How to evaluate a matrix?  Start by reproducing the first two columns at the end 
of the matrix.

io =

ε R2 0

0 R2 − R3 + R4( )
0 −1 −1

R1 R2 0

0 R2 − R3 + R4( )
1 −1 −1

  

--With numbers:

io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

  

ε
0
0

R2

R2

−1

R1

0
1

R2

R2

−1

  



io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

 = 
10( ) 2( ) −1( )− −7( ) −1( )⎡⎣ ⎤⎦ + ...

etc.

12.)

--The first part of the 
execution is shown below:

io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

  

x

io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 = 7
1 −1 −1

1
0
1

2
2
−1

 = 
10( ) 2( ) −1( )− −7( ) −1( )⎡⎣ ⎤⎦ + 2( ) −7( ) 0( )− 0( ) −1( )⎡⎣ ⎤⎦ + ...

etc.

x

--The second part:



io =

10 2 0
0 2 −7
0 −1 −1

10
0
0

2
2
−1

1 2 0
0 2 −7
1 −1 −1

1
0
1

2
2
−1

13.)

--Once you get the hang of the pattern, you can do these in your head without 
writing much of anything down:

= 
10( ) −2( )− 7( )⎡⎣ ⎤⎦ + 0 + 0

1 −2 − 7( )⎡⎣ ⎤⎦ + 2 −7( )− 0⎡⎣ ⎤⎦ + 0
= −90
−23

= 3.91 A

--The other alternative has to 
do with matrix manipulation on 
a calculator.  Specifically, if you 
multiply everything by the 
inverse determinate, you end up 
with a 1x3 matrix whose 
elements are the solution for the 
three unknowns.

D E T

−1

D E T
io
i2
i3

=
Vo
V2
V3

D E T

−1

= 1

⇒   
io

i2

i3

=
Vo

V2

V3

D E T

−1
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--the alternate alternate is to have your calculator execute an rref (reduce row 
echalon format) operation.  The following is courtesy of Mr. White.

io + 2i2 + 0i3 = 10   
0io + 2i2 − 7i3 = 0
io − i2 − i3 = 0 

1 2 0 10
0 2 −7 0
1 −1 −1 0

a. Math -> Matrix -> Edit -> A   (for name of matrix) . . . note that some calculators 
just have a “matrix” key you can use (versus starting with “math”)
b. 3 [Enter] 4 [Enter]  (this gives you a 3x4 matrix)
c. Enter coefficients and values into Matrix; exit, then go back to “matrix” and:
d. In “math,” use “rref”A  (reduced row echelon form)
e. You’ll end up with 1’s and the last row will give you the current values.

1     2      0    10
0    2   − 7     0
1  −1    −1    0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 ⇒

1     0    0    3.91
0    1    0    3.04
0    0     1     .87

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 
⇒    io = 3.91 A 
⇒    i2 = 3.04 A 
⇒    i3 = .87 A 

⇒

Using your calculator:



how much current 
must go through     ?  Must be           .  So why not just call it that (instead of    )?  
Doing so eliminates one unknown, which makes the solving a lot easier.  

and current     goes out of node A and through      , 
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ε

Example 9: Example 8 using a 
clever shortcut.  Again the power supply is 
ideal with an EMF of 10 volts, and assume 
the resistor values are the same as their 
subscripts.  

R1

R2

R3

R4Step 1:  Define one current for each branch.  

io i2

Node A

A

V

And here is the clever move.  

io − i2

Consequence:  You only need to write two loop equations (you’ve already used 
the node information in defining the currents).

Step 0: Remove the meters.  

Think about it.  If current     comes intoio
i2 R2

R3 i3
node A, 

io − i2
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ε

R1

R2

R3

R4

io i2

Node A

io − i2

Loop 1

ε − R1io − R2i2 = 0
   ⇒    io + 2i2 = 10

Loop 1:

Loop 2R2i2 − R3 io − i2( )− R4 io − i2( ) = 0
   ⇒    2i2 − 3 io − i2( )− 4 io − i2( ) = 0
   ⇒    − 7io + 9i2 = 0

Loop 2:

⇒    io =

10 2
0 9

1 2
−7 9

 = 90 − 0
9 − −14( )

           = 3.91A 

Solving:



The Island Series:
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You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem: You are given a small spotlight, the outline of a bat that can 
go over the lamp’s face, two copper serving platters, some wire and a car 
battery.  You find that if you hook the battery to the lamp, it doesn’t shine very 
brightly.  You need it to shine brightly, but only for a second (you want to 
project the bat-signal onto a cloud so Batman will come rescue you).  What 
clever thing might you do to light up the lamp for just a moment? 

Solution:  Set the two plates close without touching and parallel to one another 
(they have to be rigidly separated).  Hook one lead from the battery to one of the 
plates and the second lead to the other plate.  This will allow the plates to charge 
up, acting like a capacitor.  Disconnect the lead.  Hook one lamp lead to one of the 
plates. When you hook the other lead to the other plate, the cap will discharge very 
quickly through the lamp, providing a burst of energy that should light it up nicely.  
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CHAPTER  26:
Capacitors

discharging capacitor:
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Electric fields: exist in presence of charge 
configurations; are modified force-fields

General Review

Gauss’s Law: used to generate electric field 
functions for symmetric charge configurations

Electrical potentials: voltage fields that exist in 
the presence of charge configurations; are 
modified potential energy functions; the 
potential difference between two points equals 
work-per-unit-charge available to a secondary 
charge due to presence of field-producing charge

 

!
Fcoulomb = k q1q2

r2

E = F
q

 
ΦE =

!
E i d
!
S

S∫

 

!
E i d
!
S

S∫ = qencl
εo

 
ΔU = −

!
F i d!r∫ = − q

!
E( ) i d!r∫

 
ΔV = −

!
E i d!r∫

Vpt  chg = − k dq
r2∫

E = − dV
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A physical capacitor is quite literally two metal, 
parallel plates sitting next to one another, completely 
insulated from one another.

Capacitors

A battery generates an artificially created electrical 
potential difference between it’s terminals.  The + 
terminal is at higher voltage (the + terminal is the 
longer, red line in the sketch).  The “voltage” of the 
battery is the electrical potential difference between 
the terminals.

Connecting a battery across an uncharged 
capacitor will effect an interesting situation.  

space

Initially, there will be a voltage difference between the battery’s + terminal and 
the capacitor’s uncharged green plate, motivating charge to move between the 
two plates.  If we assume it is positive charge that is moving (controversial, but 
we’ll talk about that later), the green plate will begin to charge up positively.

+ −
ΔV = Vbattery

initially 
at zero 
voltage
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As the green (left) plate charges up, two things happen:

Electrostatic repulsion will motivate a like-amount 
of positive charge off the yellow plate, leaving it 
electrically negative; and

ΔV = Vbattery

+ −The voltage build-up on the green plate will 
diminish the voltage difference between it and the 
battery’s + terminal, and the current will decrease 
(ultimately to zero once the cap is fully charged).

What we end up with in our charged capacitor is an 
electrical device that has charge stored on it, that 
has an electric field between its plates, and that has 
energy stored in that electric field.  

In other words, in an DC (direct current) electrical circuit, capacitors store 
electrical energy.  

+ −
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Furthermore, the charge Q on ONE PLATE will 
always be proportional to the magnitude of the voltage 
difference across the plates, with the proportionality 
constant being the cap’s capacitance. Mathematically, 
then:

Qon one plate = C ΔV( )across plates + −

This, in turn, means the capacitance of a capacitor is a 
constant that tells you how much charge per volt the capacitor 
has the capacity to hold.

Usually written in truncated form as:

Q = CV

this also means that the 
capacitance is defined as: C = Q

V

+Q −Q

ΔV

Its unit of coulombs per volt is given a special name—the farad.

It’s not uncommon to find capacitors in the range of: millifarad (mf =          ), or 
microfarad (Mf or      =          ), or nanofarad (nf =         ), or picofarad (pf =          ).

10−3f
10−6 f 10−9 f 10−12 fµf



ΔV = −VcapBut       in                is the POSITIVE voltage-change across 
the plates, meaning: 

--microfarad (Mf or     ) range: this is

--millifarad (mf) range: this is

23.)

+ −

+Q −Q

ΔV

1.) A 1 farad capacitor is a HUGE capacitor.  It is much more 
common to run into capacitors in the:

2.) When traversing between capacitor plates along the electric 
field lines, the voltage goes from high to low.  That is why the 
negative sign is needed in                    .

10−3  farads

 ΔV = −
!
E i
!
d

Vcap

µf

Picky but Important Points

10−6  farads
--nanofarad (nf) range: this is 10−9  farads
--picofarad (pf) range: this is 10−12  farads

 
!
E

 Vcap = −ΔV = +
!
E i
!
d

This observation is going to be important shortly!

Q = CVcap



Example 1 (courtesy of Mr. White)

What is the capacitance of this 
system, where each conductor has a 
charge of +/- 3 Coulombs, and a 9-
Volt potential exists between the two 
conductors?
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C =
Qon one plate

Vacross plates

   = 3 C
9 V

   = .33 farads



Example 2 (courtesy of Mr. White)

Two conducting plates have a charge of 1.2 mC on 
each, with a 6.00-V potential difference between 
the two of them. What is the capacitance of this 
system?
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C=
Qon	one	plate

Vacross	plates
			 = 1.2x10

−3 	C
6	V

			 =2x10−4 	farads					(=.200	mf	or	200	µf)

The only thing tricky about this problem is that 
everything has to be in MKS—electrical potential 
in volts and charge in coulombs.  Sooo . . . 

Note:  Clearly you need to become familiar with the prefixes (and symbols) 
for milli, micro, nano and picofarads.

d  

-Q   +Q   

A  



Demo :Parallel Plate Capacitor

Physlet 
I.26.1
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Series Combinations
In a series combination of circuit elements, each 
element is attached to its neighbor on one side only.  
What is common to all series combinations is current
(i.e., the amount of charge that passes through the 
element per unit time).
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Think back to how uncharged capacitors work in electrical

C1 C2

ΔV

circuits.  A battery provides a voltage difference across its terminals which 
generates a voltage difference between its + terminal and the left plate (in the 
circuit above) of      .  As such, charge begins to accumulate on that plate 
electrostatically repulsing like charge off its right plate.

C1

In a series combination, the repulsed charge from the right plate moved to the 
next capacitor, depositing itself on that cap’s left plate, electrostatically repulsing 
like charge off its right plate . . . which proceeds back to the battery (hence a 
complete circuit).
What’s common in the series combo of caps, then, is “the charge” on each cap.



Capacitors in Series
We know the total voltage-change across the 
battery, and hence across the capacitors, is      . 
Logic additionally dictates that: 
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C1 C2

ΔVWe know, though, that:

In other words for a series combination of 
capacitors:

ΔV

ΔV = ΔVC1 + ΔVC2

C = q
ΔV

 ⇒  ΔVC1
= q

C1

If we had a single, equivalent capacitance       that could take the 
place of the series combination (i.e., a cap that would draw the 
same charge q for the same battery voltage       ), we could write:

Ceq

ΔV

Ceq

ΔV

ΔV = q
Ceq

ΔV = ΔVC1
+ ΔVC2

q
Ceq

=  q
C1

 + q
C2

   ⇒    1
Ceq

= 1
C1

+ 1
C2

ΔVC1 ΔVC2

Bottom line: 1
Ceq

= 1
C1

+ 1
C2

+ ...



Capacitors in Parallel
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C1

C2

ΔV

What is common in a parallel combination is the voltage 
drop across each element.

Using                                 and our 
equivalent capacitance circuit, we can 
write:

qtotal = qon C1
+ qon C2

= qon Ceq

So in the parallel combination of capacitors shown, charge will leave 
the battery and distribute itself between the two initially uncharged 
capacitors in such a way that the voltage across each cap is the same.  
If        is the total charge drawn from the battery over a period of time:

Ceq

ΔV

qtotal

  qtotal  =  qon C1
+  qon C2

CeqΔV = C1ΔV+C2ΔV
   ⇒    Ceq = C1 +C2

Unlike series combinations, each element in a 
parallel combination attaches to its neighbors in two places.

C = q
ΔV⇒  q = CΔV

Bottom line: Ceq = C1 +C2 + ...



Example 7: Derive an expression 
for, then determine the equivalent 
capacitance of the capacitor combination 
shown to the right.  Assume all the 
capacitors are                  
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--This is essentially a series combination—
three caps in series with a parallel 
combination (remember, what makes a 
series combo—each element is connected to 
its neighbor at one place).

C = 4 µf.
C

C C C

C

--For the three series caps: Technically, we should write:

C

1
Ceq,1

= 1
C1

+ 1
C2

+ 1
C3

== 1
C
+ 1

C
+ 1

C

      ⇒   1
Ceq,1

= 3
C

          ⇒    Ceq,1 =
C
3

   

BIG NOTE: When you have equal-
sized caps C in series, the equivalent 
capacitance equals C divided by the 
number of caps in the combination 
(look at our problem for confirmation!).
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--Redrawing:

C

C C
3

C

--To continue, we need the equivalent 
capacitance for the parallel combination.  
As parallels just add, we get:

1
Ceq

= 1
Ceq,1

+ 1
Ceq,2

      = 1
C

3( ) +
1

3C
= 3

C
+ 1

3C
= 9

3C
+ 1

3C

 ⇒     1
Ceq

= 10
3C

      ⇒     Ceq =
3C
10

=
3 4x10−6 F( )

10
= 1.2x10−6 F

Ceq,2 = C1 +C2 +C2
     = C+C+C
     = 3C

--Redrawing: 3C C
3

--For the final 
series combination:



Capacitors—Charging Characteristics

32.)

Example 10:  Consider a resistor, an 
uncharged capacitor, a switch and a power 
supply all hooked in series.  Note also that 
when the switch is thrown, the voltage across 
“a” and “b” is equal to both the battery voltage 
and the sum of voltages across the resistor and 
capacitor.  That is:  

As the cap initially has no charge on its 
plates, it will provide no resistance to 
charge flow.  That means no voltage drop 

a.) At t = 0, the switch is closed.  What initially happens in the circuit?

ΔVC ≡ VC ΔVR ≡ VR

Vo   

RC

Voa b

Vo = VC +VR

    = ioR

   ⇒    io =
Vo

R

0 VC = 0 Vo = ioR

Vo   

RC

across the capacitor with 
all the voltage drop 
happen across the resistor 
. . . which means:

Vo = VC +VR

at t=0+    a bio
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As the cap begins to charge, some of the 
voltage drop happens across the resistor
and some across the capacitor leaving us 
with a Kirchoff expression of:

b.) What happens as time proceeds?

The problem?  There are two different types of q in this expression.  One refers 
to the amount of charge on one capacitor plate.  The other refers to charge 
flowing through the circuit (current is defined as the time rate of charge flow).  

Although this won’t always be the case, in this instance the rate at which 
charge accumulates on the cap plates will equal the rate at which charge 
passes by per unit time, and we can write:

VC =
q(t)

C
VR = i(t)R

Vo   

RC

i(t)
+ −

Vo −
qplates

C
− iR = 0   

   ⇒    dq
dt

+
qplates

RC
= Vo

R
   

i = dq dt =
dqplate

dt

a b
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This means Kirchoff’s Law can be written as:

Vo   

RC

a b

+ −

dq
dt

+
qplates

RC
= Vo

R
   

   ⇒    
dqplate

dt
+

qplates

RC
= Vo

R
   

Note that as time proceeds toward infinity, the charge on the capacitor plates 
reaches maximum, all the voltage drop happens across the capacitor, current in 
the circuit drops to zero and there is no voltage drop across the resistor.  In that 
case:

Vo = VC +VR

    = Qmax

C
   ⇒    Qmax = VoC

0

VC =
q(t)

C
VR = i(t)R

i→ 0
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Solving:

 

dq
dt

+ 1
RC

⎛
⎝⎜

⎞
⎠⎟

q =
Vo

R

   ⇒    
dq
dt

= 1
RC

⎛
⎝⎜

⎞
⎠⎟

VoC− q( ) = 1
RC

⎛
⎝⎜

⎞
⎠⎟

Qmax − q( )

   ⇒    
dq

q −Qmax( ) = − dt
RC

   ⇒    
dq

q −Qmax( )0

q( t )

∫ = − dt
RCt=0

t

∫     ⇒    ln q −Qmax q=0
q( t ) = − t

RC

   ⇒    ln q(t)−Qmax − ln −Qmax = − t
RC

   ⇒    ln Qmax − q(t)( )− ln Qmax( ) = − t
RC

   ⇒    ln
Qmax − q(t)( )

Qmax( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= − t

RC
      ⇒    e

ln
Qmax−q( t )( )

Qmax( ) = e
− t

RC

   ⇒    
Qmax − q(t)( )

Qmax( ) = e
− t

RC    ⇒    Qmax − q(t) = Qmaxe
− t

RC    ⇒    q(t) = Qmax 1− e
− t

RC
⎛

⎝⎜
⎞

⎠⎟

because a − b = b − a( )
    if  b > a.



Time Constant for a Capacitor

36.)

A graph of the charging characteristic of a charging capacitor is shown below.

q0=0

no charge on 
capacitor initially

In theory, 
capacitor fully 
charged at t = 

q t( )=Qmax 1− e
− t /RC( )

charge on 
 capacitor

time

q = Qmax

∞
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It would be nice to get a feel for how fast a capacitor/resistor combination will 
charge or discharge.   

q t( )=Qmax 1− e
− t /RC( )q = .87Qmax

τ = RC 2τ = 2RC

charge on 
 capacitor

time

q = .63Qmax

q = Qmax

To that end, how much 
charge would the cap have 
accumulated after a time equal 
to RC?

q(t=RC) = Qmax 1− e
−RC

RC⎛
⎝⎜

⎞
⎠⎟

             = Qmax 1− e−1( )
             = Qmax 1− 1

e
⎛
⎝⎜

⎞
⎠⎟

             = Qmax 1− .37( ) = .63Qmax

This time is defined as one time constant   .  It is the amount of time it takes 
the capacitor to charge to 63% of its maximum.  Two time constants will charge it 
to 87% of its maximum (try the calculation if you don’t believe me).

τ
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c.) What is the current as a function of time?

VC = q(t)
C    VR = i(t)R   

Vo   

RC

a bi(t)

+ −

i(t) =
dqplate

dt

     =
d Qmax −Qmaxe

− t/RC( )
dt

     = −Qmax − 1
RC

⎛
⎝⎜

⎞
⎠⎟ e− t/RC

     = 1
R

⎛
⎝⎜

⎞
⎠⎟

Qmax

C
⎛
⎝⎜

⎞
⎠⎟ e− t/RC

     = Vo

R
⎛
⎝⎜

⎞
⎠⎟ e− t/RC

     = ioe
− t/RC
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A graph of the current characteristics for a charging capacitor/resistor 
combination:   

i t( )=ioe− t/RC

i=.13io

τ = RC 2τ = 2RC

current for
 charging 
 capacitor

time

i=.37io

io=
Vo
R

Note that after one time 
constant, the current is:

i(t=RC) = ioe
−RC

RC

             = io

e
             = .37io

After one time constant, the capacitor’s current will have dropped 63%
and will be at 37% of its maximum.  After two time constants, it will be at 13% of
its maximum.



Capacitors—Discharging Characteristics

40.)

Example 11: At t = 0, the switch is thrown and a 
charged capacitor begins to discharge.  

R Ca.) How are current through the circuit and charge on 
the capacitor plates related?

When a capacitor is discharging, the rate of change 
of charge on the plate is negative (charge is leaving) 
and:

i = dq dt = − dqplate
dt

⎛
⎝⎜

⎞
⎠⎟

switch closed at t = 0

qo = Qmax

+

−

i(t)

Using this with Kirchoff’s Law 
(tracking along the direction of 
current flow) yields:

−iR +
qplates

C
= 0

  ⇒   −      dq
dt

      + 1
RC

qplates = 0

  ⇒   − −
dqplates

dt
⎛
⎝⎜

⎞
⎠⎟
+ 1

RC
qplates = 0
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Solving:
switch closed at t = 0

qo = Qmax

− −
dqplate

dt
⎛
⎝⎜

⎞
⎠⎟
+ 1

RC
⎛
⎝⎜

⎞
⎠⎟ qplates = 0   

  ⇒    
dqplate

dt
= − 1

RC
⎛
⎝⎜

⎞
⎠⎟ qplates

      ⇒    
dqplate

qplate

= − 1
RC

⎛
⎝⎜

⎞
⎠⎟ dt

   ⇒    1
qplate

⎛

⎝⎜
⎞

⎠⎟
dqplateQmax

q t( )
∫ = − 1

RC
⎛
⎝⎜

⎞
⎠⎟ dt

t=0

t

∫

               ln q( ) Qmax

q(t ) = ln q(t))− ln(Qmax )[ ] = − t
RC

   ⇒    ln
q t( )
Qmax

⎛
⎝⎜

⎞
⎠⎟
= − t

RC
      ⇒    e

ln q t( )
Qmax

⎛
⎝⎜

⎞
⎠⎟ = e

− t
RC

      ⇒    
q t( )
Qmax

= e
− t

RC      ⇒    q t( ) = Qmaxe
− t

RC

i(t)

R C
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A graph of the charge on plate characteristics for a discharging 
capacitor/resistor combination:   

q t( )=Qmaxe
− t/RC

q=.13Qmax

τ = RC 2τ = 2RC

charge on 
 one plate

time

q=.37Qmax

Qmax=CVo

Note that after one time 
constant, the charge is:

q(t=RC) = Qmaxe
−RC

RC

             = Qmax

e
             = .37Qmax

After one time constant, the capacitor’s charge will have dropped 67% and will be 
at 37% of its maximum.  After two time constants, it will be at 13% of its 
maximum.



Summary of Graphs

43.)

Graphs of capacitor charging and discharging characteristics.

i t( ) = ioe
− t
RC

current vs. time 
(both charging and discharging)

q t( ) = Qmaxe
− t
RC

 q(t) = Qmax 1− e
− t

RC⎛
⎝⎜

⎞
⎠⎟

charge vs. time 
(discharging) charge vs. time 

(charging)

Qmax

io

Qmax

t

q

t

q

t

i



This creates a reverse electric field that diminishes the 
net electric field across the plates (see sketch on next 
page).

Dielectrics

44.)

Consider the charged, parallel-plate capacitor 
shown to the right (complete with its E-fld).
Placing an insulating material (called a dielectric)
between the plates does a number of things.   

2.) With the net electric field diminishing, the net 
electrical potential across the plates goes DOWN.  

3.) Conceptually, placing a dielectric between the plates effectively allows the 
plates to hold more charge per unit volt.  This is why the capacitance increases 
when a dielectric is placed internal to the cap.  

reverse electric-field due to van der 
Waal effect in insulating dielectric

net electric field, hence net voltage 
across the plates, decreases with 
dielectric

As C=q/V, a diminishing of V means the capacitance goes UP.  

1.) The dielectric experiences a van der Waal effect 
due to its presence in the electric field between the 
plates.  
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Net effect: For the charged, parallel-plate capacitor 
shown to the right.

where    , sometimes characterized as     , is the 
proportionality constant called the dielectric constant.

reverse electric-field due to van der 
Waal effect in insulating dielectric

net electric field, hence net voltage 
across the plates, decreases with 
dielectric

1.) The capacitance of a capacitor with a dielectric 
between its plates will equal:

Cwith  dielectric = κCwithout  dielectric ,

κ εd

Note 1:  This means there are three ways to increase 
a capacitor’s value:

1.) increase the plate area.
2.) bring the plates closer together.
3.) place an insulating dielectric between the plates.


